The RM4Es of Simple Linear Regression

- **Equation**

\[y = a + \beta x + \varepsilon \]

\(y\) is the dependent variable or response, while \(x\) is the independent variable or predictor. \(a\) is the intercept and \(\beta\) is the slope, while \(\varepsilon\) is the error term. \(a\) and \(\beta\) are the equation parameters to be estimated. Adapting this equation assumes the dependent variable \(y\) is linearly related to one and only one independent variable \(x\).

- **Estimation**

After specifying our equation, we need to use available data to estimate the values of \(a\) and \(\beta\). The ordinary least squares (OLS) method is the one employed most often, but the maximum likelihood method can also be used. When conducting OLS estimation, parameters \(a\) and \(\beta\) are chosen to minimize a quantity called the residual sum of squares that is \(\sum[y - (a + \beta x)]^2\). Under the assumption errors are uncorrelated and have the same variance, the OLS estimate is the best among all linear estimation methods.

- **Errors**

\(\varepsilon\) is the error term for simple linear regression that is the difference between the predicted values and the actual values of the dependent variable \(y\). That is, \(\varepsilon = y - (a + \beta x)\).

Errors can be used to evaluate the goodness of fit of your simple linear regression, and can also be used to diagnose your regression model in order to improve it.

- **Explanation**

\(a\), \(\beta\) and \(R^2\) are what need to be explained for simple linear regression.

Here, \(a\), the intercept, is the value of \(y\) when \(x\) equals to 0. And, \(\beta\), the slope, is the rate of change in \(y\) for a unit change in \(x\). \(R^2 = 1 - \text{RSS/SYY}\) is called the coefficient of determination. \(R^2\) tells us how much variability in \(y\) can be explained by our model. Simple linear regression can be represented by a straight line that graph is often used to help explanations.