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I. Introduction 

 

What is a data science workflow? 
 

The data science workflow is a completed procedure of data analyzation. A workflow usually 

follows these steps: data collection, data cleaning, data processing, data visualization and 

analysis, modeling, model application. Modeling can also be divided into several parts covering 

supervised and unsupervised machine learning, regression and classification, etc. RMDS data 

science workflow specifically follows an ecosystem approach with the RM4Es approach: 

equation, estimation, evaluation, and execution.  

 

While the detailed process depends on specific occasions, there are indeed some theoretical 

ideas and guidance we should follow in general. This guidebook aims to be a useful tool for 

people who have data analysis experience and to set up a few standards for each step when 

constructing an ideal workflow. 

 

This guidebook contains five parts, part 1 is the introduction of RMDS workflow and the purpose 

of this guidebook, part 2 illustrates the RM4Es under our ecosystem approach, part 3 states 

some general standards for workflow, while part 4 explains the standards in practical examples, 

and part 5 is about the review and approval process for a workflow to be published in our RMDS 

community. 

 

 

II. 4E 

 
 

a. Equation - equations represent the models and frameworks for our research. They serve 

as a link between data and research ideas or designs.  



 

 

b. Estimation - estimation is the link between equations (models) and the data used for our 

research. They are the algorithms used to compute the parameters of our models. 

c. Evaluation - errors are used to evaluate the fit between models and data. These metrics 

evaluate the performance of our estimation methods and the produced models. 

d. Execution or explanation – the explanation is the link between equations (models) and 

our intended research purposes. How we explain our results depends on our research 

purposes and also on the subject we are studying. Execution is the step that takes the 

created model for production, which is then utilized for decision making. 

 

III. Standards for Workflow 
 

This section will state the steps a RM4E workflow should follow. The following will first 

demonstrate the workflow building process. Our expert committee will then judge your workflow 

based on the following RM4Es standard. 

 

We initially built our RM4E idea based on the CRISP-DM model. However, we then refined it 

with our 4E and ResearchMap frameworks. CRISP-DM is abbreviation for Cross Industry 

Standard Process for Data Mining. The 6 steps CRISP-DM follows are: Business 

Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and 

Deployment (Quote from https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-

standard-methodology-to-ensure-a-good-outcome).  

 

In the following demonstrations for building the standard workflow, we will use a data 

analytics case study on Apple’s App Store Applications to offer a real-life illustration. The 

example here will be shown using KNIME Analytics Platform (AP) (v4.3). 

 

 

Define Questions 

○ What business question do we want to solve? 

○ What are the specific tasks? 

○ What would be success metrics?  

One of the widest uses for workflow is to make predictions on. The applications are 

widespread and can be used for a variety of purposes. For example, the applications 

could be to predict a movie’s box office profit or the score of sports games. Different 

types of predictions can be driven from one data set based on what it is you’re trying to 

predict. Therefore, before stepping into analytics of the dataset, be sure to clarify the 

goal for the modelling or analysis. For example, what business value you want to drive 

from the data, or what value you want to predict for your project. It can be predicting a 

specific numerical result (regression), or forecasting the success of one event 

https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-ensure-a-good-outcome
https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-ensure-a-good-outcome


 

 

(classification). Always have your objective in mind throughout the process of building 

workflow on your data. 

Our goal is to predict the popularity for each app based on its features offered in App 

Store. 

Data Sources 

Having the goal settled, searching for resources is the next key step. There are many 

general data storage websites we can refer to, such as Kaggle, Google Public Data 

Explorer, Open Data for each city (in the US), and Census Bureau. Besides these 

websites, we can also scrape data from websites based on our needs, using API, json, 

or other web scraping tools. For example, to get information from Google Maps, we 

need to apply for its API on Google Cloud Platform. To scrape from websites in certain 

disciplines such as the IMDB website, we need to look at its web structure through 

‘inspect’, scrape relevant data and build up the database on our own. 

The dataset can also be stored in different ways. The common way to store it is in 

Microsoft Excel. It’s usually in a ‘.xlsx’ or ‘.csv’ format. This type of data is also rather 

easy to handle, using ‘read.csv’ in R, ‘pd.read_csv’ in Python Pandas Package, or 

‘Excel Reader’ node in KNIME AP. One drawback for Excel is that it takes longer to 

process a large amount of data. Some other database storages could be SQL, 

BigQuery, etc. It’s easy to connect to these databases both on the local machines or 

cloud platform, such as Google Cloud Platform and AWS. Both SQL and BigQuery are 

accessible with SQL commands. 

Case Study 

In our case, we find that each app in App Store has a specific json file that contains 

description including name, category, language of the app, etc. The example KNIME 

workflow searches the iTunes store via REST API with a GET request via the ‘GET 

Request’ node. The query can be customized using the ‘Set iTunes REST API Keys’ 

component (optional). The returned result from the GET request is converted to a string 

(‘Binary Objects to Strings’ node), and different records are split into a collection of 

JSON objects (‘String to JSON’ and ‘JSON Path’ nodes). Finally, the resulting JSON 

records are converted to a table (‘Ungroup’ and ‘JSON to Table’ nodes). 

 



 

 

 

In this example, we used term=’abc’ and media=software. And the data table looks like: 

 

 

Cleaning Data 

Fill/Omit missing values: 

Having the raw data in hand, it’s normal that we see missing values or outliers in a 

dataset. However, always remember, do not clean them up directly! Look into the data 

first, you may actually find missing values (denoted by ‘?’ in KNIME tables) or outliers 

valuable to you. (This depends on your objectives and data in specific cases as well.)  



 

 

To eliminate features with many missing value, you can use the ‘Missing Value Column 

Filter’ node. This node allows you to eliminate features with a large proportion of 

missing values. You can also remove rows with at least one missing value or impute 

missing values with the ‘Missing Value’ node. You can fill in missing values with the 

mean, most frequently occurring value, or a constant for all features as once. Or each 

feature individually according to a rule specific to that feature. 

Outliers can be treated with the ‘Numeric Outliers’ node. You can define a criterion of for 

outliers (e.g., 1.5 times the inter-quartile range from the 1st or 3rd quartiles), and decide 

the treatment for them (e.g., replace, remove, etc.). 

 

Fix data inconsistency 

If there is any inconsistency in the data, for instance, a data in different units of 

measurement while some are in centimeters and some others in inches, be sure to 

check and fix the inconsistency to avoid error and bias.  

Data Integration 

Besides dealing with the missing value and inconsistency issue, you may find the data 

you have right now does not contain enough information you need to reach your goal. In 

this case, you may need to add extra information to your data by further looking at other 

resources. For example, suppose you are working on a movie’s Box Office prediction 

based on IMDB data, and you figure having rates from different film websites may be 

helpful in accuracy, you would need to scratch more information from sites like Rotten 

Tomatoes. 

Case Study  

In the case study, we wanted to use as much observations as we can get from App 

Store, so we filled all missing values with 0 with the ‘Missing Value’ node. 

 



 

 

Data Transformation 

Congratulations! Now you have your basic dataset built up, but we may still need to do 

some transformation to make the data a better fit.   

Feature Selection 

Data scientists are familiar with ‘overfitting’, meaning that the model describes the 

original data (usually training set) too well that it’s not doing a good job in making 

predictions (on test and validation set). Feature selection is one effective way to avoid 

overfitting. 

There are also many algorithms for feature selection: subset selection, test-validation, k-

fold, etc. While these algorithms can both help you with feature selection, there are pros 

and cons for each of them. Subset selection is more computationally complex, while k-

fold seems easier to be used with big data. You can choose any algorithm based on 

your case. 

Feature Extraction 

Other than selecting features from the existing ones, you can also compile and extract 

your own features. PCA, short for principal component analysis, is one approach. The 

idea of PCA is to use less features to explain more in the dataset. You can generate 

PVE, percentage of value explained, with different number of principal components to 

examine how well the combinations of new components work in explaining the original 

data. You would want to choose a compromised one eventually, one with relatively high 

PVE and relatively low number of PC. Furthermore, you can build regression on the 

new component variables, named PLS (partial least squares regression) and PCR 

(principle component regression).  

Normalization 

Once the dataset is built up, you need to decide whether or not the data needs some 

transformation. The transformation includes but does not limit to data aggregation, 

generalization, normalization, etc. In many dataset, we apply feature engineering as 

transformation. Feature engineering here refers to transforming or even adding more 

variables based on one’s domain knowledge. Some examples can be turning variable x 

into its absolute value |x| or squares x^2. Building new interaction terms like x1*x2 is 

also a common method. 



 

 

Other than feature engineering, you may also need to pay attention to normalization of 

the data. It may not be necessary for all the datasets to be standardized, as 

standardization very much depends on the specific situation, but there are certain 

machine learning algorithms that require this process.  

K-NN is one of these algorithms. By K-nearest Neighbor Theory, we make predictions 

on data based on their similarity between other observations, and ‘similarity’ here is 

determined by the Euclidean distance between two neighbors. When calculating the 

distance, we want to weight the importance of each features equally. There are indeed 

cases that you want to weigh one feature more important than the other, then you can 

add the coefficient in front of the equation. However, in any case, it’s a must to 

normalize data before applying the K-NN algorithm. Otherwise, data in larger magnitude 

will be automatically weighted more in the algorithm. 

Case Study 

Since we were getting data for apps randomly, including data from apps outside of US 

or non-English apps. To avoid bias, we decided to focus on data within the US app 

market. Therefore, we performed text analytics from the title for each app and removed 

the non-English apps. Moreover, as we figured keywords in titles may also affect apps’ 

popularity, we generated keyword counts and ranked them by frequency. Then we took 

keywords with Top 30 frequencies as a dummy variable in our dataset. For example, 

‘notes’ was a Top 30 keyword, and we added a feature named ‘notes’. For each 

observation, if ‘notes’ appeared in the title, then we marked a 1 under this feature. If not, 

we marked it as 0.  

We also applied interaction terms between the dummy variables and all other features, 

like ‘study × notes’. We ended up with 90 features in total. 

Data Analysis 

Hooray, you finally get the data processing done when you get to this part! Welcome to 

the world of analysis. 

For data scientists to understand a set of data, besides their domain knowledge, getting 

familiar with the data quickly will also make the modeling easier. Data visualization can 

be one way to help in analysis. You can see the general distribution of data through 

collective bar graphs, determine outliers on linear graphs, or see the correlation 

between two variables, etc. This is not much of a technical process, but this is how you 

make the data tell stories.  



 

 

Case Study 

Here we aggregated the amount of apps under each category using the ‘GroupBy’ 

node, and see the correlation between each feature. We found that apps under the 

genre ‘game’ were more popular than the others. 

Statistical Modeling/Prediction 

I believe this is the part you have been waiting for the whole time, it’s modeling time! 

When talking about machine learning, we all know that it’s been divided into two 

categories: supervised and unsupervised learning. Supervised learning refers to a type 

of analyses with observations with both input and output values (X and Y, or features 

and target, respectively). The goal is to predict Y based on X. On the other hand, 

unsupervised learning typically organizes unlabeled data (X only, no Y) to uncover 

patterns, such as clustering or low-dimensional representation.  

The first step for all modeling process is to split the original data into training and testing 

sets. The training set is used to train a model, whereas the testing set is used to predict 

the outcome and assess the performance of the trained mode. The third partition, 

validation set, can also be used for tuning of hyper-parameters of a model. A data set 

can be divided into the three partition (training, validation, and testing) with portions of 

50%, 25%, and 25%, respectively.  

When building models from a dataset, it is always good to have simple models first 

before trying more complex machine learning models. Usually we use linear and logistic 

regression models, for numerical prediction and classification, respectively, as our very 

first step, since these are the most straightforward models. Building upon the baseline, 

we more complex models. Some of the criteria we use to judge the fitness of a model 

include Adjusted R Square, MSE (mean square error), and deviance for numerical 

prediction, as well as accuracy for classification.  

Case Study 

In our example, we set linear regression as our baseline model for a numerical target 

variable. We calculated adjusted R-square and MSE as the goodness-of-fit metrics. For 

a categorical target variable, we applied logistic regression, decision tree, random 

forest, K-NN, and artificial neural network (ANN). We considered accuracy rate as our 

standard of measure in this case. The following chart is showing the result for all the 

classification models mentioned:  



 

 

 

Interpretation of results 

Be careful about the wording in the interpretation or presentation of the results in your 

primary objective or business question. Pay attention to the interpretation of terms like 

‘p-value’, ‘Adjusted R Square’, ‘confidence interval’, etc. It is great to have a 

professional statistical interpretation included, and it may also be necessary to have 

interpretation in plain English for your non-statistical audience in some cases.  

Synthesis and write up 

Once the workflow is done, you will need to write a short report or a ‘readme’ file to 

concisely describe and summarize your workflow, as our purpose is to build 

reproducible and reusable workflows for the community. In this way, people with similar 

datasets in hand can refer to your workflow to either customize their own workflows, or 

even reuse yours directly. This will make the analytics in the future more efficient. As 

open sources, the ‘readme’ texts also allow data scientists in our RMDS community to 

better understand your project and improve in the future if necessary. 

 



 

 

 

IV. Tools With Examples 
The KNIME workflows used in the following examples are available at the KNIME Hub 

(https://hub.knime.com/hayasaka/spaces/Public/latest/RMDS%20Workflow%20Guide/). 

The datasets used in the example, although they are available through their respective 

web sites listed below, are also available from the KNIME Hub as well.  

 

Example with KNIME AP using the Auto MPG data 
 

Here is what workflow should look like in visualization: 

 

 
 

This dataset contains the milage and other data from various automobiles from 1970 to 

1982. The dataset is publicly available from the UCI Machine Learning Repository 

(https://archive.ics.uci.edu/ml/datasets/auto+mpg). The workflow can be downloaded as 

part of a workflow group at [fill in URL]. 

 

1. Reading the data file 

 

The dataset was available as a text file ‘auto-mpg.data’. This was read by the ‘File 

Reader’ node, as a space delimited file. The last two columns (the origin and the car 

name) were separated by a tab, and consequently merged. We separated these 

columns by the ‘Cell Splitter By Position’ node. Finally, we removed the duplicate 

column with the ‘Column Filter’ node. 

 

https://hub.knime.com/hayasaka/spaces/Public/latest/RMDS%20Workflow%20Guide/
https://archive.ics.uci.edu/ml/datasets/auto+mpg


 

 

2. Assign column names 

 

Next, instead of using the default column names assigned by KAP, we assign column 

names with the ‘Column Rename’ node with the following setting. 

 

 
 

3. Coding the origin as codes. 

 

The origins are numerically coded (1=US, 2=European, and 3=Japanese). These 

numbers are converted to string codes (US, EU, and JP, respectively) using the ‘Rule 

Engine’ node. 

  
 

4. Aggregating the count and mean by the model year and the origin. 



 

 

 

We aggregate the MPG data by the model years and the origin (US, European (EU), or 

Japanese (JP)). We use the ‘Pivoting’ node to tabulate aggregation statistics, to group 

by the model year (row) and to pivot by the origin (columns). Under the manual 

aggregation tab, we calculate the mean MPG, as well as the count of observations. 

 
 

5. Plotting the mean MPG and count over model years 

 

The mean MPG is plotted in a line plot over model years for the three different origins 

by the ‘Line Plot’ node. The count data is plotted over model years by the ‘Stacked Area 

Chart’ node, showing the composition of the origins change over time. Both plots can be 

combined into a single composite view in a component. Here is the output.   

  

 



 

 

 

Example with KNIME AP using the diamond data 
 

Diamond dataset containing the prices and other attributes of almost 54,000 diamonds. 

The goal of this example is to predict the price based on other available features. The 

dataset is publicly available from Kaggle 

(https://www.kaggle.com/shivam2503/diamonds ).  

 

Here is the KNIME workflow used in this example: 

 
 

1. Reading the data file 

 

The data file (.csv) is read by the ‘CSV Reader’ node.  

 

2. Visual exploration of the data 

 

We examine the dataset using the ‘Data Explorer’ node. It shows various statistics for 

numerical features, as well as histograms of categorical features. Here, the minimum 

and the histogram of features ‘x’, ‘y’, and ‘z’ show that some observations are zeros for 

these features. These are the numbers describing the physical dimension of diamond, 

and thus cannot be zero. They are likely invalid observations, and thus need to be 

corrected. 



 

 

 

 
 

3. Missing value handling 

 

The zero values for features ‘x’, ‘y’, and ‘z’ must be considered as missing values. To do 

so, first the ‘Math Formula (Multi Column)’ node is used to convert 0 to missing values, 

then the ‘Missing Value’ node is used to eliminate any rows with at least one missing 

value. Total of 20 rows, out of the original 53940, are removed during this process. 

 

4. Partitioning 

 

The data set is partitioned by the ‘Partitioning’ node into the training and testing sets, 

consisting of 70% and 30% of pre-processed observations, respectively. 



 

 

 

5. Correlation filtering 

 

Some information in the data may be shared among highly correlated features. 

Consequently we may be able to eliminate some correlated features to reduce the 

number of features in the models. To do so, we create the ‘Correlation Filtering’ 

metanode to eliminate highly correlated features. Inside the metanode, the ‘Linear 

Correlation’ node is used to calculate correlation among features in the training set. 

Then the ‘Correlation Filter’ node is used to remove highly correlated features (r>0.80) 

from the training data. The results from the ‘Correlation Filter’ node is applied to the 

testing set by the ‘Reference Column Filter’ node, so that both training and testing sets 

contain the same set of features. 

 
 

 

6. Building the first model (Equation) 

 

The filtered training data is used to train a linear regression model with the ‘Linear 

Regression Learner’ node. In the model, the numerical features (‘carat’, ‘depth’, and 

‘table’) and categorical features (‘cut’, ‘color’, and ‘clarity’) are used as regressors to 

predict the numerical target ‘price’. The categorical features are automatically converted 

to a collection of dummy variables to describe different categories. The model 

parameters, as well as their statistical significance, are shown here. 



 

 

 

 

7. Predicting the target with the first model (Estimation) 

 

We use the ‘Regression Predictor’ node to predict the outcome for the testing set with 

the first model.  

 

8. Calculating the goodness-of-fit metrics for the first model (Evaluation) 

 

We use the ‘Numerical Scorer’ node to calculate various goodness-of-fit from the first 

model. The R-square for the first model is 0.917. 

 

9. Building the second model (Equation) 

 

Based on the same training data, we build our second model with the gradient boosted 

tree method using the ‘Gradient Boosted Trees Learner (Regression)’ node. As in our 

first model, we use all available numerical and categorical features to predict the target 

‘price’. 

  

10. Predicting the target with the second model (Estimation) 

 

We use the ‘Gradient Boosted Trees Predictor (Regression)’ node to predict the 

outcome for the testing set with the second model.  

  

11. Calculating the goodness-of-fit metrics for the second model (Evaluation)  

 

We use the ‘Numerical Scorer’ node to calculate various goodness-of-fit from the 

second model. The R-square for the second model is 0.98. 

  



 

 

12. Deciding which model to use (Execution) 

 

Comparing both models, we reach a conclusion that the second model is more accurate 

than the first model. Thus we will use the gradient boosted tree model as our production 

model. 

 

 

V. Review & Approval Process 
 

When your workflow is done, our expert committee will review your workflow following 

the standards as this guidebook suggests. Once approved, it will be uploaded to our 

community website as an open source, in order to let other experts discuss and improve 

upon. 

 

Thanks for your participation and we warmly welcome you to join the RMDS community! 


